Viscoelastic Fluid over a Stretching Sheet with Electromagnetic Effects and Nonuniform Heat Source/Sink

نویسندگان

  • Kai-Long Hsiao
  • Kumbakonam R. Rajagopal
چکیده

A magnetic hydrodynamic MHD of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric number E1 couple with magnetic parameter M to represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values of f ′′ 0 and θ ′ 0 have been carried out. The parameter Pr, E1, or Ec can increase the heat transfer effects, but the parameter M or A∗ may decrease the heat transfer effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of inclined Lorentz forces on entropy generation analysis for viscoelastic fluid over a stretching sheet with nonlinear thermal radiation and heat source/sink

In the present study, an analytical investigation on the entropy generation examination for viscoelastic fluid flow involving inclined magnetic field and non-linear thermal radiation aspects with the heat source and sink over a stretching sheet has been done. The boundary layer governing partial differential equations were converted in terms of appropriate similarity transformations to non-line...

متن کامل

Micropolar Fluid Flow Induced due to a Stretching Sheet with Heat Source/Sink and Surface Heat Flux Boundary Condition Effects

Computational and mathematical models provide an important compliment to experimental studies in the development of solar energy engineering in case of electro-conductive magnetic micropolar polymers. Inspired by further understanding the complex fluid dynamics of these processes, we examine herein the non-linear steady, hydromagnetic micropolar flow with radiation and heat source/sink effects ...

متن کامل

The Influence of Thermal Radiation on ‎Mixed Convection MHD Flow of a Casson ‎Nanofluid over an Exponentially Stretching ‎Sheet

   The present article describes the effects of thermal radiation and heat source/sink parameters on the mixed convective magnetohydrodynamic flow of a Casson nanofluid with zero normal flux of nanoparticles over an exponentially stretching sheet along with convective boundary condition. The governing nonlinear system of partial differential equations along with boundary conditions...

متن کامل

MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/‎sink

The heat and mass transfer analysis for MHD Casson fluid boundary layer flow over a permeable stretching sheet through a porous medium is carried out. The effect of non-uniform heat generation/absorption and chemical reaction are considered in heat and mass transport equations correspondingly. The heat transfer analysis has been carried out for two different heating processes namely; the prescr...

متن کامل

Impact of thermal radiation and viscous dissipation on hydromagnetic unsteady flow over an exponentially inclined preamble stretching sheet

The present numerical attempt deals the sway to transfer of heat and mass characteristics on the time-dependent hydromagnetic boundary layer flow of a viscous fluid over an exponentially inclined preamble stretching. Furthermore, the role of viscous heating, thermal radiation, uneven energy gain or loss, velocity slip, thermal slip and solutal slips are depicted. The prevailing time-dependent P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010